TETRA. Основные положения

Ranko Pinter (Simoco)

16.01.2000
Появление стандарта цифровой беспроводной связи TETRA (Terrestrial Trunked Radio), разработанного Европейским институтом телекоммуникационных стандартов (European Telecommunications Standards Institute, ETSI), можно считать главной вехой в истории развития мобильной связи. Он способен предоставить огромное количество сервисов и обеспечить создание столь же значительного ассортимента оборудования, из которого можно сконфигурировать почти бесконечное число архитектурных решений и топологических структур, отвечающих самым разнообразным и часто меняющимся требованиям профессиональных пользователей.

Своим происхождением технология TETRA обязана ведомственным системам подвижной связи (Private Mobile Radio, PMR) — прародителям мобильных радиотелекоммуникаций. Тот, кто лишь недавно соприкоснулся с этой быстро развивающейся отраслью промышленности, будет удивлен, узнав, что такие системы зародились еще до второй мировой войны, а начало их коммерческой эксплуатации датируется концом 40-х гг. С того времени их базовые характеристики не претерпели существенных изменений. Системы PMR основаны на так называемом конвенциональном принципе: радиоканалы выделяются для определенных групп пользователей и настраиваются вручную самим потребителем.

Постепенное завоевание технологией транкинга (пик ее популярности пришелся на 80-е гг.) твердых позиций в сотовой мобильной телефонии, а затем и на рынке PMR и корпоративных систем подвижной связи (Public Access Mobile Radio, PAMR) привело к значительным изменениям технологической основы мобильной связи. Такие возможности транкинга, как автоматический выбор канала и разделение (совместное использование) спектра частот между потребителями, позволили не только упростить оборудование, но и повысить эффективность эксплуатации частотного диапазона. В результате мобильная связь получила более широкое распространение среди пользователей из коммерческих, деловых и промышленных кругов. Рост спроса, в свою очередь, привел к увеличению объемов производства оборудования и снижению цен.

Конечно, на пути развития транкинговой связи возникали препятствия. Основным недостатком этой технологии была потеря «автономности» терминала, т.е. невозможность поддерживать связь вне зоны покрытия сети и при отказах системы. Еще один «побочный эффект», проявлявшийся в пору становления таких систем, — медленное установление связи из-за необходимости передавать управляющие сигналы вызова (так называемую сигнализацию) в выделенном канале. Кроме того, существовал потенциальный риск потери связи именно в тот момент, когда она особенно необходима. А поскольку для некоторых групп профессиональных пользователей, например служб общественной безопасности, указанные недостатки особенно нежелательны, они не очень охотно использовали данные средства связи.

Появление TETRA изменило если не все, то очень многое. Цифровая технология позволила совместить преимущества автоматических операций и присущую транкингу эффективность использования частотного спектра с автономностью терминалов, которая характерна для обычных систем PMR. Более того, технология TETRA «предложила» новые возможности, обеспечив работу в двух режимах связи (за счет объединения функций транкинговой и конвенциональной радиосвязи в едином аппаратном комплексе) и предоставив стандартный способ взаимодействия пользователей конвенциональной и транкинговой «подсетей». Для разных служб безопасности это означает, что в сложных эксплуатационных условиях и при постоянном росте требований к современным средствам связи всегда можно выбрать наиболее подходящий режим работы.

Потребность — двигатель технологии

Помимо общих целей, стремление к которым заставляет совершенствовать технологии радиосвязи (это, например, повышение эффективности использования диапазона частот, улучшение эксплуатационных показателей сети в целом, миниатюризация аппаратуры потребителя, защита каналов связи и обеспечение передачи данных по радиоканалам), мощным стимулом для развития TETRA стали нужды основных групп пользователей, прибегавших к услугам сетей PMR. Профессионалам из служб безопасности были необходимы такие характеристики радиосвязи, которые не обеспечивала ни одна из существующих цифровых сотовых систем. Важнейшие из них — сверхмалое время установления соединения (менее 1 с), параллельное предоставление нескольких услуг связи, а также оптимизация дальности связи и мощности радиостанций.

Сегодня этим требованиям больше всего соответствуют системы многостанционного доступа с временным разделением (TDMA), которые наилучшим образом способны оптимизировать мощность оборудования, возможности подвижной связи и дальность ее действия как в городской, так и в сельской местности. Метод TDMA позволяет «балансировать» (что не всегда удается системам CDMA) между высокой мощностью со значительным техническим риском, и малой мощностью, но с меньшим техническим риском (что свойственно FDMA-системам).

Функционирование систем TETRA, построенных на базе технологии TDMA, основано на организации четырех логических каналов (разнесенных на 25 кГц и имеющих такую же ширину) на одной физической радиочастоте. Общая пропускная способность составляет 36 кбит/с, однако необходимость в передаче определенных сигналов для коррекции ошибок и синхронизации снижает реальную скорость сети до 28,8 кбит/с, т.е. пропускная способность каждого канала составляет 7,2 кбит/с.

Структура кадра TETRA (рис. 1) представляет собой четыре временных интервала на кадр TDMA. Восемнадцать TDMA-кадров образуют мультикадр, один из кадров которого постоянно используется для передачи управляющего (контрольного) сигнала. Каждый временной интервал (слот) равен 14,167 мс, и в этом интервале размещаются 510 информационных (входных) бит. Применение схем сжатия позволяет транспортировать общий трафик голоса и данных в 17 TDMA-кадрах, оставляя 18-й для сигналов управления. Управляющий кадр обеспечивает одну из уникальных особенностей протокола TETRA: поток данных не прерывается для передачи сигнализации; последняя постоянно передается в фоновом режиме — даже в так называемом минимальном режиме MM (Minimum Mode), когда все каналы заняты трафиком.

Рис.1. Структура кадра TETRA

Мультикадр TDMA является структурным элементом гиперкадра, который формируется для редко повторяющихся кадров, например кадра синхронизации шифра. Гиперкадр состоит из 60 мультикадров.

Для того чтобы обеспечить высокую пропускную способность канала, для модуляции сигнала было решено использовать метод дифференциальной квадратурной фазовой модуляции со сдвигом сигналов на p/4 (p/4 DQPSK). Заметим, что реальная скорость в сети TETRA — 28,8 кбит/с; это в три раза больше значения пропускной способности в GSM-системах, где при такой же ширине канала применяется Гауссова модуляция с минимальным сдвигом (GMSK). Кроме того, выбор метода p/4 DQPSK объясняется исходным требованием сосуществования TETRA с аналоговыми системами и, соответственно, необходимостью работать с соседним каналом при уровне помех относительно несущей, составляющем -60 дБ. (Для сравнения: модуляция GMSK, выбранная для стандарта GSM, позволяет достичь только уровня внеполосного излучения -36 дБ, поэтому необходимо очень точно планировать ячейки во избежание интерференции каналов.) Метод дифференциальной квадратурной модуляции, несомненно, является более современным и сложным, а значит, его применение сопряжено с большим риском нарушения связи, чем при модуляции по GMSK, однако именно ¶/4 DQPSK успешно реализован в цифровых системах, построенных в США (D-AMPS) и Японии (JDC/ PDC).

Еще одно преимущество систем TETRA — эффективное использование частотного ресурса. Для организации однозоновой системы с четырьмя каналами связи требуется частотный диапазон шириной всего 25 кГц. Спецификации TETRA предусматривают работу как симплексных, так и дуплексных радиостанций, обеспечивают широковещательную и групповую связь, а также режим индивидуального вызова (как в сотовой связи). При этом время установления связи не превышает 300 мс. Стандарт GSM, ориентированный в первую очередь на предоставление услуг беспроводной телефонии, базируется на протоколах ISDN, в которых не заложены многие основополагающие функции транкинга (групповая широковещательная связь, одновременное предоставление нескольких услуг, вытеснение абонента в соответствии с его приоритетом, мониторинг радиостанций и пр.). Кроме того, хотя в стандарте GSM время установления связи обычно не превышает нескольких секунд, порой оно исчисляется минутами.

«Вложенные» стандарты

Дабы удовлетворить как можно более широкому набору требований, относящихся к предоставлению услуг передачи голоса и данных при конвенциональной и транкинговой радиосвязи (как в открытом, так и в защищенном режимах), понадобилось использовать несколько решений. В результате стандарт TETRA разросся до шести частей.

Три из них посвящены вопросам аттестационного тестирования (спецификации Conformance Testing), методам кодирования (Codec) и защите информации (Security). Три других в общем-то являются самостоятельными стандартами — на интегрированную систему передачи речи и данных (Voice + Data, V+D), на пакетную передачу данных (Packet Data Optimised, PDO) и на конвенциальную связь, или прямой режим передачи (Direct Mode Operation, DMO). Последний стандарт , в сущности, описывает режим обычной радиосвязи, т.е. работу по выделенным каналам с ручным переключением. Хотя при связи по стандартам V+D и DMO используется одна и та же радиоплатформа, каждый из них поддерживает собственный уникальный набор услуг и специальных функций. В зависимости от потребностей пользователя один комплект аппаратуры может обеспечивать работу в соответствии с одним или несколькими «вложенными» в TETRA стандартами.

Функции и услуги

То, что стандарт TETRA имеет столь впечатляющие возможности, вполне объяснимо. Его создатели хотели (и почти достигли желаемого) охватить как сервис мобильной радиосвязи и мобильной передачи данных, необходимый для традиционных пользователей ведомственных систем подвижной связи (PMR), так и услуги мобильной (читай — сотовой) телефонии, требующиеся для бизнес-пользователей. В соответствии со сложившейся терминологией, транкинговые услуги системы TETRA подразделяются на телесервисы (удаленную связь), услуги передачи данных (на несущей) и дополнительные (рис. 2).

Рис.2. Структура служб системы TETRA

Под телесервисами понимают системные услуги, предоставляемые через пользовательский интерфейс, которые обеспечивают любые виды связи. Один из примеров телесервиса — индивидуальный или групповой вызов, инициализируемый путем нажатия абонентом определенной кнопки на радиостанции. Список телесервисов стандарта TETRA приведен в табл. 1.

Вид услуги 

Описание

Индивидуальный вызов Вызов одного многими. Связь симплексная или дуплексная, направления «абонент—абонент», «абонент—диспетчер», «абонент радиосистемы—абонент сети»
Групповой вызов  Вызов одним многих. Связь симплексная, направления «абонент—группа абонентов», «диспетчер—группа абонентов», «абонент телефонной сети—группа абонентов» (в группу может входить диспетчер)
Подтвержденный групповой вызов  Тип группового вызова, при котором инициатор вызова видит на экране радиостанции, кто из членов группы отвечает на вызов
Широковещательный вызов  Тип группового вызова, при котором принимающая сторона не может ответить на сообщение. Обычно используется для рассылки объявлений большим группам, а иногда и всем абонентам радиосети
Открытый и зашифрованный вызовы  Все виды услуг могут предоставляться в открытом или зашифрованном виде

 Таблица 1. Телесервисы (службы речевой связи)

В отличие от телесервисов, услуги передачи данных не включают в свой «цикл реализации» пользовательский интерфейс. Функции встроены в аппаратуру; а для их выполнения задействуются только интерфейсы конечного оборудования с сетью и требуется наличие в системе специальных приложений (см. рис. 2). В набор таких услуг (табл. 2) входят передача данных с коммутацией цепей, передача коротких сообщений (SDS) и коммутируемых пакетов данных. Соответствующие системные службы обеспечивают формирование «цифровой трубы» с различными характеристиками, оптимизированными на определенный тип передачи.

Режим передачи
Описание
Незащищенный Скорость до 28,8 кбит/с. Используется, если нет защиты от ошибок или она встроена в приложение. Идеальный режим для транспортировки видео, при которой ошибки передачи проявляются как шум изображения
Защищенный Скорость до 19,2 кбит/с (средний уровень защиты) или 9,6 кбит/с (высокий уровень защиты). Используется, если ошибки передачи могут привести к серьезным последствиям (например, при транзакциях по кредитным картам)
Пакетная передача с установлением соединения Соответствует протоколу X.25
Особые случаи пакетной передачи без установления соединения  Передача данных по протоколу CLNS, дополненная некоторыми специфическими для стандарта TETRA функциями

 Таблица 2. Услуги передачи данных

Дополнительные услуги (табл. 3), как явствует из их названия, являются дополнением к телесервисам или услугам передачи данных либо их модернизацией (см. врезку). Например, услуга вызова с преимущественным приоритетом

Вид услуги
Описание
Вызов, санкционированный диспетчером Используется, если диспетчер не просто рассылает запросы на вызов, а формирует из них очередь
Выбор зоны Дает возможность вызывающей стороне (обычно — диспетчеру) ограничить область зоны покрытия, в которой осуществляется групповой вызов
Приоритетный доступ Используется для управления нагрузкой перегруженных систем за счет ограничений, направленных на определенные категории пользователей
Преимущественный приоритетный вызов  В условиях перегруженности каналов предоставляет вызывающей стороне более высокий приоритет в очереди
Приоритетный вызов Если все каналы заняты, то устраняется вызов с низшим приоритетом или прерывается самый длительный разговор, а освобожденный канал используется для неотложного вызова
Подключение к соединению после начала сеанса Позволяет члену группы подсоединиться к уже идущему сеансу связи (например, если он прежде находился вне зоны охвата, был отключен или участвовал в другом вызове )
Избирательное прослушивание Используется для незаметного прослушивания разговора. Обычно применяется диспетчером
Дистанционное прослушивание Дискретный сигнал направляется на радиостанцию для включения передатчика индикации вызова. Применяется при отсутствии ответа пользователя или при возможности возникновения нештатной ситуации
Динамическая перегруппировка Позволяет создавать или удалять (аннулировать) временные рабочие группы абонентов при определенных обстоятельствах или инцидентах

Таблица 3. Дополнительные услуги ведомственных радиосетей

(Pre-emptive Priority Call, PPC) позволяет установить голосовую связь (телесервис) даже в том случае, когда заняты все сетевые ресурсы. Для большей ясности дополнительные сервисы подразделены на две группы — услуги для систем PMR и для систем телефонной связи.

TETRA-транкинг

Стандарт TETRA поддерживает все виды транкинговой связи, используемые в аналоговых системах, в том числе транкинг сообщений, транкинг передач и квазитранкинг передач.

Транкинг сообщений — выделение на весь период вызова (он может включать в себя несколько отдельных вызовов, инициализированных различными терминалами) одного и того же канала для передачи трафика. Канал освобождается лишь тогда, когда вызывающая сторона завершает связь (при групповом вызове), отключается (при индивидуальном вызове) или когда исчерпывается время активной связи.

Транкинг передач — выделение канала только на время выполнения каждой транзакции (т.е. при каждой инициализации передачи). После освобождения канала передача управляющего сигнала для следующей транзакции выполняется по служебному каналу.

Квазитранкинг передач — канал выделяется для каждой транзакции вызова, но освобождается не сразу по завершении цикла передачи, а после короткого периода, называемого временем «зависания» канала. В течение этого периода канал может быть еще раз выделен под новую транзакцию, являющуюся частью того же вызова.

Режимы работы

Стандарт TETRA обеспечивает широкий выбор режимов работы системы — нормальный, расширенный, минимальный и с разделением времени. Каждый из них соответствует определенному сценарию: например, система функционирует с малой нагрузкой, с большой нагрузкой, трафик преимущественно состоит из пакетов данных и т. д.

Нормальный режим чаще всего используется при начальной инсталляции базовых станций (БС), которые работают с обычной нагрузкой, т.е. задействуют 4—5 пар радиочастот на систему (16—20 речевых каналов). В этом режиме общий канал управления на основной несущей частоте является главным каналом управления, отображается в тайм-слоте всех кадров (от 1 до 18) и служит для передачи всех общих служебных сигналов. Абонентские радиостанции, не участвующие в конкретном вызове, «прослушивают» такой канал.

Расширенный режим применяется в системах, использующих одновременно два или более каналов управления в целях обеспечения требуемого уровня сервиса — по времени установления соединения либо по степени надежности (при пакетной передаче данных). Дополнительные каналы управления способны работать в качестве общих вторичных каналов управления (в отличие от основного канала управления, ими может пользоваться только определенная часть радиоабонентов) или назначенных вторичных каналов управления (обычно служат для передачи сигнализации после прерывания транспортировки данных сообщением от абонента к БС или обратного).

Минимальный режим (MM) ориентирован на зоны покрытия с «низким» трафиком. Чаще всего он реализуется на БС, работающих с одной парой частот, хотя теоретически большее число каналов БС не является ограничением для его применения. В этом режиме система выделяет все временные интервалы в главном канале управления для передачи трафика либо набора специализированных сигналов управления, поэтому для транспортировки общих служебных сигналов можно использовать только 18-й кадр.

В разрывном режиме, который чаще называют режимом разделения времени (Time Sharing Mode, TSM), радиочастотный канал используется совместно несколькими БС, т.е. распределен между ними. Такой режим применим только для зон покрытия с очень низким уровнем трафика и очень ограниченным спектром выделенных частот. Хотелось бы подчеркнуть разницу между режимом TSM, используемым системой или БС, и режимом передачи сигнала мобильной радиостанцией: обычно для последнего выделяется только один временной интервал на кадр, поэтому передача сигнала от абонента, по сути своей, разрывна. Особо отметим, что в разрывном режиме TSM основные сигналы управления передаются по главному каналу управления, который совместно задействуется несколькими БС; каналы трафика используются базовыми станциями также совместно.

Режимы работы терминала

В режиме ожидания («спящем») абонентская радиостанция (или, используя более широкое понятие, терминал) не связана с системой активно. Она лишь непрерывно прослушивает основной управляющий или любой другой служебный канал (вспомним, что возможно наличие одного или более вторичных служебных каналов). Терминал должен «знать» обо всех управляющих сигналах, передаваемых по главному каналу управления.

Режим ожидания может использоваться для энергосбережения (Energy Economy Mode), поскольку позволяет абонентской радиостанции «проспать» определенное число TDMA-кадров, прежде чем «проснуться» и отследить очередной управляющий кадр. Но терминал должен информировать систему о периодах своего «сна», чтобы не пропустить переданных в это время системных сообщений. Предполагается, что в режиме энергосбережения он работает синхронно с передающей системой. Поддерживаются семь модификаций этого режима с коэффициентами «засыпания» от 1:1 до 1:359 в пределах шести мультикадров (см. рис. 1).

Хотя система не имеет связи с терминалом в период «сна», его может «разбудить» системное приложение, инициализирующее вызов или передачу данных. Режим энергосбережения может быть прерван и после переназначения его времени.

В режиме трафика терминалу выделяется канал трафика для передачи речи или данных, и абонент получает возможность осуществления связи.

Услуги передачи данных

В зависимости от того, какой тип передачи данных воплощен в TETRA-системе, поддерживающей «вложенный» стандарт V+D (реализаций стандарта PDO пока не существует), можно выбрать услугу передачи данных с коммутацией цепей (CD), передачи коммутируемых пакетов данных (PD) или передачи коротких сообщений (SDS).

Спецификация службы SDS в стандарте TETRA охватывает все виды услуг передачи сообщений, необходимых мобильным системам, и позволяет организовывать как двухточечные, так и многоточечные соединения с возможностью выбора зоны действия. В ней также предусмотрены более 65 тыс. статусных сообщений, половина из которых может быть инициализирована пользователем. Эта служба настраивается самим пользователем; возможна ее оптимизация для одновременной передачи речевого трафика с сообщениями длиной 16, 32 или 64 бит либо для автономной передачи сообщений большей длины — вплоть до 2048 бит (256 символов).

Услуги CD используются при транспортировке больших объемов данных поверх основного трафика канала, причем в каждом канале шириной 25 кГц задействуется один из четырех тайм-слотов. Именно в этом случае стандарт TETRA обеспечивает полосу пропускания по требованию. Если пользователю необходимо повысить пропускную способность, можно объединить 2—4 временных слота и установить канал связи сквозным из конца в конец. Скорость передачи данных будет определяться, в первую очередь, степенью защищенности такого канала (табл. 4).

Уровень защиты
Число используемых тайм-слотов
1 2 3 4
Без защиты 7,2 14,4 21,6 28,8
Низкий 4.8 9,6 14,4 19,2
Высокий 2,4 4,8 7,2 9,6

Таблица 4. Зависимость скорости передачи данных (кбит/с) от степени защищенности канала

Первоначально в стандарте TETRA (а точнее, в V+D) содержались спецификации, определяющие два типа услуг PD (упорядоченные и с нарушением упорядоченности), которые базировались на протоколе X.25. Однако в связи с быстрым развитием Internet недавно стандарт пополнился еще одной службой передачи коммутируемых пакетов данных, основой которой стал IP-протокол.

Кодирование / декодирование речи

Общение абонентов PMR-систем часто проходит в условиях высокого уровня окружающего шума. В отличие от пользователей сотовой связи, которые обычно могут выбирать подходящее место для ведения переговоров, абоненты PMR-систем из различных служб безопасности не располагают такой возможностью: им нередко приходится работать на фоне завывания сирен, выстрелов, переговоров по громкой связи и т.п. При создании оборудования TETRA эта особенность была учтена. Оно обеспечивает необходимые в подобной обстановке большую мощность выходного аудиосигнала, его малое искажение и четкость речи. Хорошее качество передаваемой речи обусловлено использованием кодека TETRA.

Применяемый в стандарте TETRA алгоритм кодирования/декодирования базируется на методе линейного предсказания с многоимпульсным кодовым возбуждением (Code-Excited Linear Predictive, CELP), который дополнен специальными кодовыми книгами алгебраической структуры. Этот механизм кодирования получил название Algebraic CELP (ACELP).

Схема работы речевого кодека в системах TETRA:
а) кодирование, б) декодирование

Кодек, работающий по алгоритму ACELP, сжимает сегмент речевого сигнала длительностью 30 мс (16 выборок х 8 кГц = 128 кбит/с) в соответствии с набором правил кодовой книги и формирует набор закодированных речевых сигналов, передаваемых со скоростью речевого кодека — 4,567 кбит/с (рис. 3). Для достижения необходимой чистоты речи при передаче сигнала по радиоканалу со скоростью 7,2 кбит/с используются также методы прямой коррекции ошибок (Forward Error Correction, FEC) и циклического избыточного кодирования (Cyclic Redundancy Code, CRC). На стороне приема декодер производит аналогичные действия, но в обратном порядке (рис. 4).


Рис.4 Речевой кодек TETRA

Перечисленные свойства кодека обеспечиваются такими его функциями:
•    оценки важности элементов речи (Speech Importance Factor, SIF);
•    установления комфортного уровня шума (Comfort Noise Function, CNF);
•    заимствования кадров (Frame Stealing Function, FSF).

Сценарий их «работы» достаточно прост. SIF анализирует каждый речевой кадр, чтобы определить, насколько ухудшится качество передаваемой речи в результате его потери. В соответствии с результатами анализа этому кадру присваивается необходимый уровень защиты (нулевой, т.е. низкий, средний или высокий). Функция CNF генерирует специальный кадр, используемый для замены некачественных кадров речи либо кадров, служащих для передачи управляющих сигналов.

Несмотря на кажущуюся простоту механизма кодека, реализовать его было непросто, поскольку для обеспечения требуемой скорости канала TETRA (7,2 кбит/с) и предусмотренных стандартом TETRA показателей качества речи производительность кодека должна составлять не менее 15 MIPS. Соответственно, и аппаратные решения TETRA достаточно сложны.

Защита информации

Стандарт TETRA предлагает разнообразные функции защиты информации, которые можно настраивать на конкретные потребности пользователей PMR-систем. Среди этих функций — такие, как присвоение алиасных имен (псевдонимов), назначение кратких шифрованных идентификаторов, аутентификация, шифрование, законный перехват, маркировка во времени.

Алиасные имена используются для защиты в эфире индивидуальных (Individual TETRA Subscriber Identity, ITSI) или коротких идентификаторов (Short Subscriber Identity, SSI) абонентов системы TETRA. ITSI и SSI заменяются псевдонимами (псевдоименами) ATSI и ASSI, т.е. просто другими идентификаторами, которые известны только сетевому оператору и которые нельзя получить из списков ITSI. Сетевой оператор может изменять их через определенные временные интервалы, уведомляя об этом лишь владельцев конкретных радиостанций.

Кроме того, для защиты идентификаторов, передаваемых по радиоинтерфейсу, задействуется краткий шифрованный идентификатор (Encrypted Short Identity, ESI). В отличие от ASSI, применяемого только для индивидуальных абонентов, ESI служит и для идентификации групп пользователей (GTSI), причем число групповых идентификаторов может быть любым.

Еще одна мера защиты, предусматриваемая стандартом TETRA, — аутентификация пользователя, выполняемая с помощью процедуры «запрос—ответ». Она позволяет системным средствам, входящим в инфраструктуру TETRA, удостовериться в подлинности прав доступа терминала к запрашиваемому сетевому сервису. Этот же механизм обеспечивает аутентификацию самой системы в тех случаях, когда она пытается отключить удаленный терминал или «убить» его. Наконец, в случае использования приложений, требующих максимальной защиты, возможна взаимная аутентификация абонента и системы.

Операции шифрования радиоканала при передаче речевых, управляющих сигналов и данных в стандарте TETRA иногда называют шифрованием радиоинтерфейса. Сейчас в TETRA стандартизованы четыре алгоритма шифрования (TEA1—TEA4). Они обеспечивают разные степени защиты группам пользователей в соответствии с различными требованиями к необходимому уровню безопасности.

Если пользователям нужно полностью скрыть от посторонних глаз всю информацию (голос и данные), проходящую по каналам сети TETRA, то можно прибегнуть к помощи механизмов сквозного шифрования. К таковым относятся синхронизация с использованием техники замены бит в кадрах, соответствующих речевым, подключение к соединению после начала сеанса связи (Late Entry), смена ключей по эфиру (Over The Air Re-keying, OTAR) и защита от спуфинга.

Для перехвата подозрительных (криминальных) разговоров в телекоммуникационных сетях согласно национальным законодательствам (или другим регламентирующим актам) существуют специальные службы. Спецификации, именуемые законным перехватом (Lawful Interception, LI), определяют рамки соответствия применяемых для данных целей технологий тем, которые приняты в «Международных требованиях пользователя». На нынешнем этапе разработки стандарта TETRA в спецификациях LI достигнут наиболее полный учет разных национальных нормативов.

Наконец, в TETRA используется такая функция защиты, как маркировка по времени (Time Stamping). Она позволяет предотвратить замену информации в радиоканале, имитацию соединения злоумышленником, а также подключение к нему в течение сеанса связи с выборочным прослушиванием.

Режим прямой передачи

Базовый вариант режима прямой передачи (Direct Mode, DMO) предоставляет возможность прямой связи «точка—точка» или «точка—много точек» между двумя или более TETRA DMО-терминалами без использования средств управления транкинговой сетевой инфраструктурой (TETRA Switching and Management Infrastructure, SwMI). При этом существуют разные типы реализации данного режима связи (рис. 5).


Рис.5 Использование режима DMO

Прибегнув к помощи DMО-ретрансляторов, зону связи DMO-терминалов можно значительно расширить. В стандарте TETRA DMО-ретранслятор определяется как регенеративный, т.е. способный самостоятельно декодировать и кодировать принимаемые речевые и управляющие сигналы. Таким образом, он способен улучшить общие эксплуатационные показатели канала связи. Стандарт указывает три типа DMO-ретрансляторов, различающихся числом используемых для вызова частот: одно- и двухчастотный (один вызов), а также работающий на двух частотах с двумя вызовами.

TETRA предусматривает использование DMO-шлюза для двустороннего взаимодействия оборудования и абонентов, работающих в режимах DMO и транкинговом. Вызов, полученный из транкинговой системы, ретранслируется на мобильные терминалы, которые функционируют в режиме DMO, и наоборот.

Управляемый прямой режим

Одна из особенностей режима DMO состоит в том, что если канал свободен, терминал может приступить к передаче без дополнительных разрешений от системы. Этим DMO отличается от режима транкинга, в котором терминал начинает передачу сигнала только после получения от системы санкций на ее проведение. Правда, при некоторых обстоятельствах (например, в условиях помех) бывает необходимо ограничить географическую область функционирования DMO-терминала (причем не накладывая ограничений на свободу его перемещения). В таком случае используется управляемый прямой режим (Managed Direct Mode, MDMO), который обеспечивает дополнительный способ установления связи: DMO-терминалу запрещается осуществлять передачу в точно оговоренном географическом районе, пока он не получит системный сигнал на авторизацию данной операции.

Механизм режима MDMO основан на базовом принципе функционирования аппаратуры в составе системы TETRA: ей необходимо регулярно принимать сигналы авторизации (разрешения на передачу). Логика управления DMO-терминалами программируется в соответствии с требованиями к системе. Сигнал авторизации генерируется как оборудованием транкинговой инфраструктуры (в этом случае он передается через шлюзы и терминалы двойного наблюдения), так и специальным главным терминалом, который, согласно лицензионным условиям, должен работать, например, только в определенной зоне.

Службы DMO

Службы передачи речи могут использовать речевой кодек TETRA с шифрованием речи для двухточечной (индивидуальный вызов) и многоточечной (групповой вызов) связи. Режим передачи речи всегда является симплексным.

Передача данных как при индивидуальном, так и при групповом вызове может выполняться в незащищенном и закрытых (с разным уровнем защиты) режимах. В режиме транкинга пропускная способность абонентского канала определяется одним временным интервалом, т.е. составляет 7,2 кбит/с. В стандарте TETRA DMO указаны шесть типов услуг передачи защищенных данных, при реализации которых поддерживаются (с помощью метода FEP) два уровня защиты от ошибок передачи. Скорость транспортировки данных составляет 4,8 и 2,4 кбит/с (при степенях защиты 2/3 и 1/3 соответственно). Как речь, так и данные могут быть зашифрованы.

Услуга передачи коротких сообщений TETRA DMO (Short Data Service, SDS) подобна сервису SDS, предлагаемому транкинговым стандартом TETRA. При этом в режиме DMO поддерживается и двухточечная, и многоточечная связь, но в первом случае допускается (опция) передача уведомлений, а во втором уведомление не предусмотрено. Служба SDS может быть оптимизирована для обмена сообщениями, размер которых определяется пользователем, а также имеющими заранее заданный размер либо текст (например, если нужно проинформировать о возникновении аварийной ситуации). Такие сообщения не возбраняется отправлять или получать параллельно с ведущимся разговором или передачей данных. Услуги SDS можно использовать при автоматическом определении местонахождения подвижного средства (автомобиля), передаче статуса, выполнении процедур смены ключей по эфиру и т.д.

Специфические службы DMO

Эти службы дополняют описанные ранее услуги, добавляя к ним как бы новое качество, которое распознается системой при анализе управляющих сигналов. К таким службам относятся подключение к соединению в процессе сеанса связи, идентификация номера передающей стороны, оповещение об аварийной ситуации и передача ключей по эфиру.

Подключение к соединению в течение сеанса связи позволяет DMO-терминалу при «получении» активного канала подключиться к текущему сеансу связи (если пользователь является членом данной группы). Доступ к активному каналу может осуществляться в разных ситуациях, например при выборе частотного канала, включении терминала или переключении с одного DMO-канала на другой, при возвращении абонента в зону DMO-покрытия и переходе с режима транкинговой связи на DMO.

Услуга идентификации номера передающей стороны позволяет терминалам, принимающим вызов, определять номер мобильной станции, осуществляющей передачу в данный момент. Для этого терминал, инициирующий вызов, записывает в начало каждой транзакции вызова индивидуальный номер абонента (ITSI), благодаря чему принимающие терминалы могут отобразить на экране идентификатор данной станции. Однако пользователь способен скрыть точное значение своего исходящего идентификатора ITSI, т.е. не заносить его в каждую транзакцию (для определенных групп авторизованных пользователей такая функция очень важна).

Кроме того, в режиме DMO обеспечивается передача аварийного вызова. DMO-терминал, инициирующий аварийный вызов по каналу DMO, получает преимущество перед любым другим вызовом по этому каналу.
Служба смены ключей по эфиру (OTAR) поддерживается в режиме DMO с помощью специально назначенного терминала. Он может генерировать и распределять статические ключи шифрования (Static Cipher Key, SCK) по DMO-терминалам, используя собственный шифрованный ключ, который передается с соблюдением всех мер защиты из центра аутентификации.

Средства безопасности

Режим TETRA DMO предусматривает использование целого ряда механизмов, которые служат для защиты передаваемых по эфиру управляющих сигналов, речи и данных. В их число входят средства аутентификации, обеспечения конфиденциальности, управления ключами (включая передачу последних по эфиру) и блокировки / разблокировки терминалов. Кроме того, обеспечивается сквозное шифрование, при котором задействуется технология синхронного шифрования потока информации, что позволяет достичь высокого уровня защиты трафика пользователя.

Стандартные интерфейсы TETRA

Несколько внутренних системных интерфейсов определены в TETRA как стандартные. (В спецификациях на эти интерфейсы имеются тесты на интероперабельность, которые должны проводиться независимыми тестовыми лабораториями. Они призваны установить возможность использования в системе элементов от различных производителей.) К системным относятся общий радиоинтерфейс (Common Air Interface, CAI), межсистемный интерфейс (Inter System Interface, ISI), интерфейс периферийного оборудования (Peripheral Equipment Interface, PEI), интерфейс проводной связи (Line Station Interface, LSI) и главный интерфейс управления сетью (Central Network Management Interface, CNMI). Кроме того, в TETRA определены интерфейсы связи со стандартными телекоммуникационными сетями (рис. 6).

Рис.6 Стандартные интерфейсы TETRA-системы

Межсистемный интерфейс

ISI позволяет объединить отдельные сети TETRA. При построении большой сети, например региональной, можно связать между собой множество локальных сетей через их коммутирующие узлы. Такая сеть будет администрироваться с помощью общих системы контроля вызовов и подсистемы управления сетью. Аналогичным образом несколько региональных систем связи объединяются в национальную сеть.

Перечень услуг, предоставляемых через ISI, включает в себя индивидуальный и групповой вызовы, управление мобильными радиостанциями, службу коротких сообщений, все виды дополнительных услуг, а также защиту передаваемой информации. Этот интерфейс обеспечивает пользователю возможность перемещения из одной системы TETRA в другую; при этом все услуги, предоставляемые в «смежных» системах, оказываются доступными для него. Если переход в другую систему осуществляется во время сеанса связи, ISI реализует функцию восстановления вызова.

Конечно, «путешественник» должен регистрироваться в каждой посещаемой им системе TETRA. Однако интерфейс ISI имеет свойство дерегистрации «мигрирующего» пользователя. «Родная» сеть абонента получает уведомление о его переходе в другую систему, но благодаря функции группового прикрепления (Group Attachment) он может остаться членом своей рабочей группы и принимать относящиеся к ней вызовы. Служба аутентификации дает возможность каждой «новой» сети аутентифицировать этого абонента, а служба OTAR — назначать для него статические ключи шифрования (SCK).

Интерфейс ISI — очень полезный инструмент при развертывании средних и больших многоуровневых сетей TETRA. С его помощью можно строить сети, используя оборудование разных производителей. Он обеспечивает, как минимум, совместную работу различных сетей TETRA, позволяя предоставлять услуги и передавать вызовы их абонентам. Но что еще важнее, ISI гарантирует полное взаимодействие «обособленных» сетей TETRA, функционирующих в одном и том же диапазоне частот.

Интерфейс периферийного оборудования

При создании стандартов TETRA одной из главных целей была разработка интерфейса, который вполне соответствовал бы принципам и техническим решениям, используемым в области информационных технологий, однако требовал бы минимального (и по объему, и по функциям) ПО, встраиваемого в терминальное оборудование передачи данных. Интерфейс периферийного оборудования (PEI) позволяет подключать разные типы устройств, применяемых для передачи данных (например, переносные ПК), к мобильным станциям через стандартный порт и дает таким станциям (как носимым, так и установленным на подвижных средствах) доступ к широкому кругу компьютерных приложений. Все функции передачи данных в режиме TETRA V+D может выполнять оборудование, подсоединенное к мобильному терминалу через PEI. Этот интерфейс служит также для настройки и управления речевыми вызовами при совместной передаче речи и данных, но не он обеспечивает саму речевую связь.

Спецификации PEI определяют набор параметров и информации, которая доступна абоненту, работающему на подключенном к мобильной станции ПК. В них определены следующие категории услуг.

1. Применение команд AT, которые позволяют получить доступ к услугам передачи данных по коммутируемым каналам, к службам коротких сообщений и информации, хранящейся в памяти мобильной радиостанции.
2. Пакетная передача данных по протоколу двухточечной связи PPP.
3. Дистанционное управление по радиоканалу на основе сетевого протокола TETRA тип 1 (TNP1) — управление вызовами, доступом к функциям мобильного управления вызовами, доступом к функциям такого управления с терминального оборудования, например с ПК, и использованием службы коротких сообщений.

Интерфейс проводной связи

Основой работы интерфейса LSI является «отображение» функций общего радиоинтерфейса (CAI) на функции, используемые при передаче информации по проводным каналам связи. При этом каждый канал TETRA представляется в нем как отдельный поток данных со скоростью 8 кбит/с. Основное отличие LSI от интерфейса мобильной станции состоит в том, что пользователь, подключенный через LSI, всегда имеет доступ к инфраструктуре коммутации и управления системы (SwMI), в то время как обычному абоненту приходиться устанавливать доступ каждый раз.

Поскольку LSI способен одновременно поддерживать несколько речевых каналов, каждый из которых требует наличия своего кодека, то на работающей через него станции необходимо иметь целый банк кодеков TETRA. Благодаря этому интерфейсу можно получить почти все услуги, предоставляемые в режиме TETRA V+D, в том числе сервис ограниченного доступа к функциям управления системой TETRA. Физический уровень LSI базируется на каналах с пропускной способностью 64 кбит/с (выделенные каналы связи или B-каналы сети ISDN с базовой или максимальной скоростью передачи); соединение осуществляется напрямую либо через промежуточную (например, ISDN) сеть.

Главный интерфейс управления

Для управления внешней сетью двух или более самостоятельных сетей TETRA, связанных интерфейсом ISI, и координации работы ее пользователей был создан интерфейс CNMI (или CNM). Он предназначен лишь для инициализации функций высокого уровня, исполняемых на уровне ядра TETRA-системы. CNM снабжен собственными службами авторизации и аутентификации; дополнительно он может использовать функции шифрования. Его главные задачи — обеспечение централизованного мониторинга более чем одной системы TETRA и поддержка основного набора (ограниченного по сравнению с общим для TETRA) функций управления глобальным роумингом абонентов.

CNM выполняет немало функций управления и координации работы оборудования (хотя и несколько меньше, чем обеспечивают обычные средства управления локальной сетью TETRA). Например, данные, предназначенные для управления производительностью, передаются из локальной сети в CNM в специальном стандартном формате, который необходим для их последующего анализа. Система реагирует на возникшую неисправность только после генерации сигнала предупреждения, что происходит лишь в случае серьезных отказов оборудования или системы безопасности.

Однако следует отметить: управление работой абонента сводится к выдаче разрешения на регистрацию в сети и к ведению истории его деятельности, а к функциям управления расчетами относятся управление центральной биллинговой системой и вычисление платы за глобальный роуминг. Управление безопасностью в CNM включает в себя процедуры, регулирующие как доступ, так и защиту информации.

Подключение к сетям общего пользования

В TETRA определены стандарты трех шлюзов, обеспечивающих подключение к телефонным сетям общего пользования (ТфОП), сетям ISDN и передачи данных (СПД).

Шлюз к ТфОП позволяет абоненту TETRA устанавливать соединение с любым номером ТфОП, и наоборот, но это возможно только при речевой связи (как полудуплексной, так и дуплексной). Передача данных по модему в коммутируемую сеть (аналоговую ТфОП) не входит в стандарт TETRA. Шлюз и сеть TETRA «воспринимаются» сетью ТфОП как ее абоненты. Для реализации входящего звонка из ТФОП необходимо активизировать двухступенчатую процедуру набора номера, которая обеспечивает тональный набор с разделением частот (в телефонном аппарате это функция DTMF). Шлюз выполняет кодирование/декодирование речи в соответствии со стандартом TETRA, подавление эха, преобразование номеров, а также обеспечивает хорошее качество звука.

Шлюз к сети ISDN позволяет ее абонентам устанавливать связь с пользователями системы TETRA, и наоборот. При входящих звонках шлюз преобразует управляющую информацию (сигнализацию) ISDN в формат, совместимый с процедурами управления вызовом системы TETRA. При исходящих звонках сигнализация TETRA конвертируется в формат, необходимый для процедур управления вызовом ISDN (DSS1).

В случае входящих звонков адресация вызываемого абонента TETRA может реализовываться с помощью дополнительной функции прямого набора номера (Direct Dial In, DDI), субадресации в рамках ISDN-сети или за счет двухступенчатого набора. Функция DDI позволяет внешнему абоненту ISDN звонить непосредственно по номеру пользователя в системе TETRA.

Спецификация шлюза ISDN определяет предоставление речевых услуг: в режиме открытого канала — для двухточечных соединений, а в режиме коммутации цепей — для многоточечных. При этом поддерживаются как максимальная, так и базовая скорость передачи ISDN. Для каждого вызова шлюз выполняет перекодировку речевого сигнала со скоростью передачи 7,2 кбит/с (стандарт TETRA) в речевой сигнал, обработанный методом импульсно-кодовой модуляции (Pulse Code Modulation, PCM), со скоростью передачи 64 кбит/с. В случае полудуплексного вызова возможны два варианта работы: использование запроса сети ISDN на передачу или ее прекращение, а также применение процедур обнаружения речевого сигнала.

Шлюз к СПД — это обычный шлюз, реализующий протокол X.25. Он обеспечивает услуги пакетной передачи для абонентов TETRA, в том числе доступ к службам и базам данных. Внешней СПД сеть TETRA «представляется» узлом СПД либо устройством ввода данных (терминалом). В первом случае связь осуществляется по протоколу X.75. Одна из важных функций шлюза к СПД — преобразование внутренних адресов TETRA в стандартные адреса, применяемые в сетях X.25.